The Ascraeus Mons fan-shaped deposit: Volcano–ice interactions and the climatic implications of cold-based tropical mountain glaciation
نویسندگان
چکیده
a r t i c l e i n f o a b s t r a c t Amazonian-aged fan-shaped deposits extending to the northwest of each of the Tharsis Montes in the Tharsis region on Mars have been interpreted to have originated from mass-wasting, volcanic, tectonic and/or glacial processes. We use new data from MRO, MGS, and Odyssey to characterize these deposits. Building on recent evidence for cold-based glacial activity at Pavonis Mons and Arsia Mons, we interpret the smaller Ascraeus fan-shaped deposit to be of glacial origin. Our geomorphological assessment reveals a number of characteristics indicative of glacial growth and retreat, including: (1) a ridged facies, interpreted to be composed of drop moraines emplaced during episodic glacial advance and retreat, (2) a knobby facies, interpreted to represent vertical downwasting of the ice sheet, and (3) complex ridges showing a cusp-like structure. We also see evidence of volcano–ice interactions in the form of: (1) an arcuate inward-facing scarp, interpreted to have formed by the chilling of lava flows against the glacial margin, (2) a plateau feature, interpreted to represent a subglacial eruption, and (3) knobby facies superimposed on flat-topped flows with leveed channels, interpreted to be subglacial inflated lava flows that subsequently drained and are covered by glacial till. We discuss the formation mechanisms of these morphologies during cold-based glacial activity and concurrent volcanism. On the basis of a Mid-to Late-Amazonian age (250–380 Ma) established from crater size-frequency distribution data, we explore the climatic implications of recent glaciation at low latitudes on Mars. GCM results show that increased insolation to the poles at high obliquities (>45 •) forces sublimation of polar ice, which is transported to lower latitudes and deposited on the flanks of the Tharsis Montes. We assess how local orographic effects, the mass balance of the glacier, and the position of equilibrium line altitudes, all played a role in producing the observed geomorphologies. In doing so, we outline a glacial history for the evolution of the Ascraeus Mons fan-shaped deposit and compare its initiation, growth and demise with those of Arsia Mons and Pavonis Mons.
منابع مشابه
Recent glaciation at high elevations on Arsia Mons, Mars: Implications for the formation and evolution of large tropical mountain glaciers
[1] The 166,000 km fan-shaped deposit at Arsia Mons contains three characteristic facies (ridged, knobby, and smooth), which are interpreted as the depositional remains of a cold-based glacier that was present on the west–northwestern flanks in the Late Amazonian period of Mars history. Here, we consider several high-elevation graben on the western flank of Arsia Mons that are interpreted as th...
متن کاملDebris-covered Glaciers within the Arsia Mons Fan-shaped Deposit: Implications for Glaciation, Deglaciation and the Origin of Lineated Valley Fill
Introduction: Recent MOC and THEMIS data have shed new light upon intriguing flow-like features on Mars including viscous flow-like features [1], lobate debris aprons [2], concentric crater fill, lineated valley fill, and features interpreted as rock glaciers or debris-covered glaciers [3,4,5,6]. These features are distributed over lowto mid-latitudes and all appear to have experienced flow due...
متن کاملOrigin and evolution of a cold-based tropical mountain glacier on Mars: The Pavonis Mons fan-shaped deposit
[1] Each of the large Tharsis Montes volcanoes in the equatorial region of Mars has an unusual Amazonian-aged fan-shaped deposit on its west-northwestern flank. On the basis of Viking Orbiter data, the origin of these deposits has been variously ascribed to volcanic, mass-wasting, tectonic, and glacial processes. Using new MGS and Odyssey data, combined with recent developments in the study of ...
متن کاملMiddle to Late Amazonian tropical mountain glaciers on Mars: The ages of the Tharsis Montes fan-shaped deposits
Fan-shaped deposits (FSDs) extending to the northwest of the Tharsis Montes on Mars are the remnants of Amazonian-aged, cold-based, tropical mountain glaciers. We use high-resolution images to perform new impact crater size-frequency distribution (CSFD) analyses on these deposits in an effort to constrain the timing and duration of ice accumulation at tropical latitudes on Mars. This analysis r...
متن کاملAscraeus Mons, Mars: Characterisation and Interpretation of the Fan-shaped Deposit on Its Western Flank
Introduction: Ascraeus Mons is one of the three Tharsis Montes shield volcanoes that are aligned along a N40°E trend on the crest of the broad Tharsis Rise. Although largely constructed of volcanic deposits, each of the Tharsis Montes has a distinctive and unusual fan-shaped deposit extending approximately northwest on their western flanks. Three major facies have been identified within the fan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008